$\tau_i \tau_j - M^* - \sigma_k$ -continuous Maps

VADIVEL1, *R. V. M. RANGARAJAN2, † and R DHARANI3,‡

^{1&3}Post and Research Department of Mathematics, Government Arts College (Autonomous), Karur-639 005, India.

Department of Mathematics, Annamalai University, Annamali Nagar-608 002, India. Professor and Head, Department of Mathematics, K.S.R College of Engineering, Tiruchengode

Abstract

The aim of this paper is to introduce and investigate the concept of $\tau_i \tau_j - M^* - \sigma_k$ -continuous maps in a bitopological space . Moreover we investigate the relationship between $\tau_i \tau_j - \delta - \sigma_k$ -continuous, $\tau_i \tau_j - \delta s - \sigma_k$ -continuous, $\tau_i \tau_j - \delta s - \sigma_k$ -continuous, $\tau_i \tau_j - \delta s - \sigma_k$ -continuous and respective some other closed mappings..

Keywords and phrases: $\tau_i \tau_j - M^* - \sigma_k$ -continuity, $\tau_i \tau_j - \delta - \sigma_k$ - continuous, $\tau_i \tau_j - \delta s - \sigma_k$ - continuous, $\tau_i \tau_j - a - \sigma_k$ - continuous, $\tau_i \tau_j - e^* - \sigma_k$ - continuous.

AMS (2000) subject classification: 54E55.

Introduction and Preliminaries

Levine in 1963 initiated a new types of open set called semiopen set [10]. A subset A of a space (X,τ) is called regular open (resp., regular closed) [15] if A = int(cl(A)) (resp., A = cl(int(A)). The delta interior [4] of a subset A of (X,τ) is the union of all regular open sets of X contained in A and is denoted by $\delta int(A)$. A subset A of a space (X,τ) is called δ -open [12] if $A = \delta int(A)$. The complement of δ -open set is called δ -closed. Alternatively, a set A of (X,τ) is called δ -closed [4] if $A = \delta cl(A)$, where $\delta cl(A) = \{x \in X : A \cap int(cl(U)) \neq \emptyset, U \in \tau \text{ and } x \in U\}. \text{ A subset } A \text{ of a space } X \text{ is called}$ θ -open [1] if $A = \theta int(A)$, where $\theta int(A) = \bigcup \{int(U) : U \subseteq A, U \in \tau^c\}$, and a subset A is called θ -semiopen [2] (resp., δ - preopen [12] , e-open[5], M-open [6], M^* -open[3], δ -semiopen [11] , δ -open[15], e^* -open [5] and a -open[5]) if $A \subseteq cl(\theta int(A))$ (resp., $A \subset cl(\theta int(A)) \cup int(\delta cl(A)))$, $A \subseteq int(\delta cl(A))$, $A \subseteq cl(\delta int(A)) \cup int(\delta cl(A))$ and $A \subseteq int(cl(\theta int(A)))$, $A \subseteq cl(\delta int(A))$, $A = \delta int(A)$, $A \subseteq cl(int(\delta cl(A)))$ $A \subseteq int(cl(A)(\delta int(A)))$, where int(), cl(), $\theta int()$, $\delta int()$ and $\delta cl()$ are the interior, closure, θ -interior, δ -interior and δ -closure operations, respectively. The notion of bitopological spaces (in short, Bts's) was first introduced by Kelly[8]. Through out this paper, let (X, τ_1, τ_2) or simply X be a Bts and $i, j \in \{1, 2\}$. A subset Sof a Bts X is said to be $\tau_{1,2}$ -open [9] if $S = A \cup B$ where $A \in \tau_1$ and $B \in \tau_2$. A subset Sof X is said to be $\tau_{1,2}$ -closed if the complement of S is $\tau_{1,2}$ -open. and $\tau_{1,2}$ -clopen if S is both $au_{1,2}$ -open and $au_{1,2}$ -closed. For a subset A of X, the interior (resp., closure) of Awith respect to τ_i will be denoted by $int_i(A)$ (resp., $cl_i(A)$) for i=1,2. In this paper, we introduce and investigate the concept of $\tau_i \tau_i - M^* - \sigma_k$ -continuous maps in a bitopological spaces. In addition, several properties of these notions and connections to several other known ones are provided.

Let (X, τ_1, τ_2) be a Bts. A subset A of X is called $\tau_i \tau_j - M$ -open [13] (briefly, $\tau_i \tau_j - M$ -o) if $A \subseteq cl_j(\theta int_i(A)) \cup int_i(\delta cl_j(A))$ and A is $\tau_i \tau_j - M$ closed (in short, $\tau_i \tau_j - M$ -c) if $X \setminus A$ is $\tau_i \tau_j - M$ -o. A is pairwise M -open if it is both $\tau_i \tau_j - M$ -o and $\tau_j \tau_i - M$ -o. A subset A of X is called $\tau_i \tau_j - M^*$ -open [13] (briefly, $\tau_i \tau_j - M^* - o$) if $A \subseteq int_i(cl_j(\theta int_i(A)))$ and A is $\tau_i \tau_j - M^*$ - closed (briefly, $\tau_i \tau_j - M^* - o$) if $X \setminus A$ is $\tau_i \tau_j - M^* - o$. A is pairwise $M^* - o$ if it is both $\tau_1 \tau_2 - M^* - o$ and $\tau_2 \tau_1 - M^* - o$.

Clearly A is $\tau_i \tau_j - M^*$ -c iff $A \supseteq cl_j(int_i(\theta cl_j(A)))$. We denote the family of all $\tau_i \tau_j - M^*$ -c sets in a Bts (X, τ_1, τ_2) by $D_{M^*C}(\tau_i, \tau_j)$. A subset A of X is called $\tau_i \tau_j - \theta$ -semiopen [13] (briefly, $\tau_i \tau_j - \theta$ -so) if $A \subseteq cl_j(\theta int_i(A))$, $\tau_i \tau_j - \delta$ -preopen [13] (briefly, $\tau_i \tau_j - \delta$ -po) if $A \subseteq int_i(\delta cl_j(A))$, $\tau_i \tau_j - \epsilon$ -open if $A \subseteq cl_j(\delta int_i(A)) \cup int_i(\delta cl_j(A))$, $\tau_i \tau_j - \delta$ -semi open [13] (briefly, $\tau_i \tau_j - \delta$ -so) if $A \subseteq cl_j(\delta int_i(A))$, $\tau_i \tau_j - \delta$ -open [13] (briefly, $\tau_i \tau_j - \delta$ -open [14] (briefly, $\tau_i \tau_j - \delta$ -open [15] (briefly, $\tau_i \tau_j - \delta$ -open [15] (briefly, $\tau_i \tau_j - \delta$ -open [16] (briefly, $\tau_i \tau_j - \delta$ -open [17] (briefly, $\tau_i \tau_j - \delta$ -open [18] (briefly, $\tau_$

2. $\tau_i \tau_i - M^* - \sigma_k$ -continuous Maps

Definition 2.1 A map $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called

- (1) $\tau_i \tau_j M^* \sigma_k$ -continuous (briefly, $\tau_i \tau_j M^* \sigma_k$ -cts) if the inverse image of every σ_k -c set is an $\tau_i \tau_j M^*$ -c set in (X, τ_1, τ_2) .
- (2) $\tau_i \tau_j \delta \sigma_k$ -continuous (briefly, $\tau_i \tau_j \delta \sigma_k$ -cts) if the inverse image of every σ_k -c set is an $\tau_i \tau_j \delta$ -c set in (X, τ_1, τ_2) .
- (3) $\tau_i \tau_j \delta s \sigma_k$ -continuous (briefly, $\tau_i \tau_j \delta s \sigma_k$ -cts) if the inverse image of every σ_k -c set is an $\tau_i \tau_j \delta s$ -c set in (X, τ_1, τ_2) .
- (4) $\tau_i \tau_j a \sigma_k$ -continuous (briefly, $\tau_i \tau_j a \sigma_k$ -cts) if the inverse image of every σ_k -c set is an $\tau_i \tau_j a$ -c set in (X, τ_1, τ_2) .
- (5) $\tau_i \tau_j e^* \sigma_k$ -continuous (briefly, $\tau_i \tau_j e^* \sigma_k$ -cts) if the inverse image of every σ_k -c set is an $\tau_i \tau_j e^*$ -c set in (X, τ_1, τ_2) .

Theorem 2.1 If a map $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is a

- (1) $\tau_i \sigma_k$ -cts then it is a $\tau_i \tau_j M^* \sigma_k$ -cts
- (2) $\tau_i \tau_i \theta \sigma_k$ -cts then it is a $\tau_i \tau_i M^* \sigma_k$ -cts
- (3) $\tau_i \tau_j \theta s \sigma_k$ -cts then it is a $\tau_i \tau_j M^* \sigma_k$ -cts
- (4) $\tau_i \tau_j \theta \sigma_k$ -cts then it is a $\tau_i \tau_j \theta s \sigma_k$ -cts
- (5) $\tau_i \tau_j M^* \sigma_k$ -cts then it is a $\tau_i \tau_j M \sigma_k$ -cts cts
- (6) $\tau_i \tau_i M \sigma_k$ -cts then it is a $\tau_i \tau_i e \sigma_k$ -cts
- (7) $\tau_i \tau_i \delta p \sigma_k$ -cts then it is a $\tau_i \tau_i e \sigma_k$ -cts
- (8) $\tau_i \tau_i \theta \sigma_k$ -cts then it is a $\tau_i \tau_i \delta \sigma_k$ -cts
- (9) $\tau_i \tau_j \theta s \sigma_k$ -cts then it is a $\tau_i \tau_j \delta s \sigma_k$ -cts
- (10) $\tau_i \sigma_k$ -cts then it is a $\tau_i \tau_j M^* \sigma_k$ -cts
- (11) $\tau_i \tau_i \delta \sigma_k$ -cts then it is a $\tau_i \tau_i a \sigma_k$ -cts
- (12) $\tau_i \tau_j M^* \sigma_k$ -cts then it is a $\tau_i \tau_j \theta s \sigma_k$ -cts
- (13) $\tau_i \tau_j \delta s \sigma_k$ -cts then it is a $\tau_i \tau_j e \sigma_k$ -cts
- (14) $\tau_i \tau_j \delta p \sigma_k$ -cts then it is a $\tau_i \tau_j M \sigma_k$ -cts
- (15) $\tau_i \tau_j a \sigma_k$ -cts then it is a $\tau_i \tau_j \delta p \sigma_k$ -cts
- (16) $\tau_i \tau_i e \sigma_k$ -cts then it is a $\tau_i \tau_i e^* \sigma_k$ -cts
- (17) $\tau_i \tau_j a \sigma_k$ -cts then it is a $\tau_i \tau_j \delta s \sigma_k$ -cts

Proof. (1) Let V be an σ_k -c set. Since f is τ_i - σ_k -cts. $f^{-1}(v)$ is $\tau_i\tau_j$ - σ_i -c. By Lemma 2.1 in[13], $f^{-1}(v)$ is $\tau_i\tau_j$ - M^* -c in (X,τ_1,τ_2) . Therefore f is $\tau_i\tau_j$ - M^* - σ_k -cts. The proof of (2) to (17) are similar as in (1).

 $\begin{array}{lll} \textbf{Example} & \textbf{2.1} & \text{Let} & X = Y = \{a,b,c,d\}, \tau_1 = \{\phi,X,\{a\},\{b\},\{a,b\},\{d,c\},\{a,d,c\},\{b,c,d\}\} \\ & \tau_2 = \{\phi,X,\{a\},\{b,d\},\{a,c\},\{a,b,d\}\} \\ & \{a,b,c\}\}. & \text{Then the identity map} & f:(X,\tau_1,\tau_2) \longrightarrow (Y,\sigma_1,\sigma_2) & \text{is a} \end{array}$

- (1) $\tau_1\tau_2$ M^* σ_1 -cts but it is not τ_1 σ_1 -cts, since for the σ_1 -c set $\{a,d\}, f^{-1}(\{a,d\}) = \{a,d\}$ which is not τ_1 -c set.
- (2) $\tau_1\tau_2 M^* \sigma_1$ -cts but it is not $\tau_1\tau_2 \theta \sigma_1$ -cts, since for the σ_1 -c set $\{a,c\}, f^{-1}(\{a,c\}) = \{a,c\}$ which is not $\tau_1\tau_2 \theta$ -c set.

Example 2.2 Let $X=Y=\{a,b,c,d\}, \tau_1$ and τ_2 are defined as in Example2.1, $\sigma_1=\{Y,\phi,\{d\},\{a,d\}\}\}$ and $\sigma_2=\{Y,\phi,\{d\},\{a,b,c\},\{a,b,d\}\}\}$. Then the identity map $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a $\tau_1\tau_2-M^*-\sigma_1$ -cts but it is not $\tau_1\tau_2-\theta s-\sigma_1$ -cts. Since for the σ_1 -c set $\{b,c\},f^{-1}(\{b,c\})=\{b,c\}$ which is not $\tau_1\tau_2-\theta$ -sc set.

Example 2.3 Let $X=Y=\{a,b,c,d\}, \tau_1$ and τ_2 are defined in Example2.1, $\sigma_1=\{Y,\phi,\{b,c\},\{a,b,c\}\}\}$ and $\sigma_2=\{Y,\phi,\{b\},\{a,b,c\},\{a,b,d\}\}\}$. Then the identity map $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a $\tau_1\tau_2-\theta s-\sigma_1$ -cts but it is not $\tau_1\tau_2-\theta-\sigma_1$ -cts. Since for the σ_1 -c set $\{d\},f^{-1}(\{d\})=\{d\}$ which is not $\tau_1\tau_2-\theta-c$ set.

 $X = Y = \{a, b, c, d\}, \tau_1$ and τ_2 are defined in Example2.1, Example 2.4 Let $\sigma_2 = \{Y, \phi, \{d\}, \{a, b, c\}\}\$. Then the identity map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a $\tau_1 \tau_2 - M$ $-\sigma_1$ -cts but it is not $\tau_1\tau_2$ - M^* - σ_1 -cts. Since for the σ_1 -c set $\{a,b,c\}$, $f^{-1}(\{a,b,c\})=\{a,b,c\}$ which is not $\tau_1 \tau_2 - M^* - c$ set.

Let $X = Y = \{a, b, c, d\}, \tau_1$ and τ_2 are defined in Example 2.1, $\sigma_1 = \{Y, \phi, \{c\}, \{a, c\}\}\$ and $\sigma_2 = \{Y, \phi, \{c\}, \{a, c\}, \{a, c, d\}\}\$. Then the identity $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a $\tau_1\tau_2-e-\sigma_1$ -cts but it is not $\tau_1\tau_2-M-\sigma_1$ -cts. Since for the σ_1 -c set $\{b,d\}, f^{-1}(\{b,d\}) = \{b,d\}$ which is not $\tau_1\tau_2 - M$ -c set.

Example 2.6 Let $X = Y = \{a, b, c, d\}, \tau_1$ and τ_2 are defined in Example 2.1, $\sigma_1 = \{Y, \phi, \{a, c\}\}\$ and $\sigma_2 = \{Y, \phi, \{a\}, \{a, c\}, \{a, c, d\}\}\$. Then the $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a $\tau_1\tau_2-e-\sigma_1$ -cts but it is not $\tau_1\tau_2-\delta p-\sigma_1$ -cts. Since for the σ_1 -c set $\{b,d\}, f^{-1}(\{b,d\}) = \{b,d\}$ which is not $\tau_1 \tau_2 - \delta$ -pc set.

Example 2.7 Let $X = Y = \{a, b, c, d\}, \tau_1$ and τ_2 are defined in Example2.1, $\sigma_{\!\scriptscriptstyle 1} = \! \{Y, \phi, \! \{c\}, \{b,d\}\} \qquad \text{and} \qquad \sigma_{\!\scriptscriptstyle 2} = \! \{Y, \phi, \{b\}, \{b,d\}, \{a,b,c\}\} \quad . \quad \text{Then} \quad \text{the} \quad \text{identity} \quad \text{map}$ $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a $\tau_1\tau_2-\delta-\sigma_1$ -cts but it is not $\tau_1\tau_2-\theta-\sigma_1$ -cts. Since for the σ_1 -c set $\{a,b,d\}, f^{-1}(\{a,b,d\}) = \{a,b,d\}$ which is not $\tau_1\tau_2 - \theta$ -c set.

Let $X = Y = \{a,b,c,d\}, \tau_1$ and τ_2 are defined in Example2.1, $\sigma_1 = \{Y, \phi, \{c\}, \{a, c\}\}\$ and $\sigma_2 = \{Y, \phi, \{b\}, \{a, c\}, \{a, b, c\}\}\$. Then the identity map $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a $\tau_1\tau_2$ - δs - σ_1 -cts but it is not $\tau_1\tau_2$ - θs - σ_1 -cts. Since for the σ_1 -c set $\{b,d\}, f^{-1}(\{b,d\}) = \{b,d\}$ which is not $\tau_1\tau_2 - \theta$ -sc set.

Example 2.9 Let $X = Y = \{a, b, c, d\}, \tau_1 = \{\phi, X, \{a, b\}\}, \tau_2 = \{\phi, X, \{c\}\} \sigma_1 = \{Y, \phi, \{a, b\}\}$ and $\sigma_2 = \{Y, \phi, \{a\}, \{a,b\}, \{a,b,c\}\}\}$. Then the identity map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a $\tau_1 \tau_2$ - M^* - σ_1 -cts but it is not τ_1 - σ_1 -cts. Since for the σ_1 -c set $\{c,d\}$, $f^{-1}(\{c,d\}) = \{c,d\}$ which is not τ_1 -c set.

 $X = Y = \{a,b,c,d\}, \tau_1 = \{\phi, X, \{a\}, \{b,c\}, \{a,b,c\}\}\}$ Example 2.10 Let $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a,c\}, \{a,b,d\}\}\}, \quad \sigma_1 = \{Y, \phi, \{b\}, \{a,b\}\} \quad \text{and} \quad \sigma_2 = \{Y, \phi, \{a\}, \{a,b\}, \{a,b,d\}\}\}.$ Then the identity map $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a $\tau_1\tau_2-a-\sigma_1$ -cts but it is not $\tau_1\tau_2-\delta-\sigma_1$ -cts. Since for the σ_1 -c set $\{a,c,d\}$, $f^{-1}(\{a,c,d\})=\{a,c,d\}$ which is not $\tau_1\tau_2-\delta$ -c set.

Let $X = Y = \{a, b, c, d\}, \tau_1$ and τ_2 are defined in Example2.10, Example 2.11 $\sigma_1 = \{Y, \phi, \{a, c\}\}\$ and $\sigma_2 = \{Y, \phi, \{a\}, \{a, c\}, \{a, b, c\}\}$. Then the $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a $\tau_1\tau_2-\theta s-\sigma_1$ -cts but it is not $\tau_1\tau_2-M^*-\sigma_1$ -cts. Since for the σ_1 -c set $\{b,d\}, f^{-1}(\{b,d\}) = \{b,d\}$ which is not $\tau_1\tau_2 - M^*$ -c set.

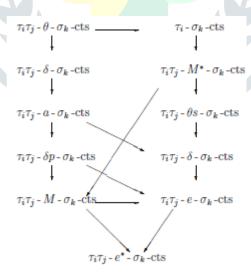
Let $X = Y = \{a, b, c, d\}, \tau_1$ and τ_2 are defined in Example2.10, Example 2.12 $\sigma_1=\{Y,\phi,\{a,b\},\{a,c\}\} \quad \text{ and } \quad \sigma_2=\{Y,\phi,\{a\},\{a,b\},\{a,c\}\} \quad . \quad \text{ Then } \quad \text{the } \quad \text{identity } \quad \text{map} \quad .$ $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a $\tau_1\tau_2$ -e- σ_1 -cts but it is not $\tau_1\tau_2$ - δs - σ_1 -cts. Since for the σ_1 - σ_2 set $\{c,d\}, f^{-1}(\{c,d\}) = \{c,d\}$ which is not $\tau_1\tau_2 - \delta$ -sc set.

Example 2.13 Let $X = Y = \{a, b, c, d\}, \tau_1$ and τ_2 are defined in Example2.10, $\sigma_{\!\scriptscriptstyle 1} = \{Y, \phi, \{b\}, \{a,c\}\} \qquad \text{and} \qquad \sigma_{\!\scriptscriptstyle 2} = \{Y, \phi, \{a\}, \{a,b\}, \{a,c\}\} \qquad . \qquad \text{Then} \qquad \text{the} \qquad \text{identity} \qquad \text{map}$ $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a $\tau_1\tau_2-M-\sigma_1$ -cts but it is not $\tau_1\tau_2-\delta p-\sigma_1$ -cts. Since for the σ_1 -c set $\{a,c,d\}, f^{-1}(\{a,c,d\}) = \{a,c,d\}$ which is not $\tau_1\tau_2 - \delta$ -pc set.

Example 2.14 Let $X = Y = \{a,b,c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a,b,\}\}\$, $\tau_2 = \{\phi, X, \{a\}, \{a,b\}\}\$, . $\sigma_1 = \{Y, \phi, \{a, c\}\}\$ and $\sigma_2 = \{Y, \phi, \{a\}, \{a, c\}\}\$ Then the $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is a $\tau_1\tau_2-\delta p-\sigma_1$ -cts but it is not $\tau_1\tau_2-a-\sigma_1$ -cts. Since for the σ_1 -c set $\{b,d\}, f^{-1}(\{b,d\}) = \{b,d\}$ which is not $\tau_1\tau_2 - a - c$ set.

Example 2.15 Let $X = Y = \{a,b,c,\}, \tau_1$ and τ_2 are defined in Example 2.14, $\sigma_2 = \{Y, \phi, \{b\}, \{b, c\}\}$ Then the $\sigma_1 = \{Y, \phi, \{b, c\}\}$ and identity тар $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is a

- (1) $\tau_1 \tau_2 e^* \sigma_1$ -cts but it is not $\tau_1 \tau_2 e^* \sigma_1$ -cts, since for the σ_1 -c set $\{a\}, f^{-1}(\{a\}) = \{a\}$ which is not $\tau_1 \tau_2 - e$ -c set.
- (2) $\tau_1 \tau_2 \delta p \sigma_1$ -cts but it is not $\tau_1 \tau_2 a \sigma_1$ -cts, since for the σ_1 -c set $\{a\}, f^{-1}(\{a\}) = \{a\}$ which is not $\tau_1 \tau_2 - a$ -c set.



Note: $A \rightarrow B$ denotes A implies B, but not conversely.

Theorem 2.2 A map $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is $\tau_i \tau_j - M^* - \sigma_k$ -cts. iff the inverse image of every σ_k -o set in Y is $\tau_i \tau_j - M^*$ -o in X.

Proof. Let G be a σ_k -o set in Y. Then G^c is σ_k -c set in Y. Since f is $\tau_i\tau_j$ - M^* - σ_k -cts, $f^{-1}(G^c)$ is $\tau_i\tau_j$ - M^* -c in X. That is $f^{-1}(G^c)=(f^{-1}(G))^c$ and so $f^{-1}(G)$ is $\tau_i\tau_j$ - M^* -o in (X,τ_1,τ_2) .

Conversely, let F be a σ_k -c set in Y. Then F^c is σ_k -p set in Y. By hypothesis, $f^{-1}(F^c)$ is $\tau_i \tau_j - M^*$ -o in X. That is $f^{-1}(F^c) = (f^{-1}(F))^c$ and so $f^{-1}(F)$ is $\tau_i \tau_j - M^*$ -c in (X, τ_1, τ_2) . Therefore f is $\tau_i \tau_j - M^* - \sigma_k$ -cts.

Theorem 2.3 If a map $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is $\tau_i\tau_j - M^* - \sigma_k$ -cts, then $f(\tau_i\tau_j - M^*cl(A)) \subset \sigma_{\iota}cl(f(A))$ holds for every subset A of X.

Proof. Let A be any subset of X. Then $f(A) \subseteq \sigma_k cl(f(A))$ and $\sigma_k cl(f(A))$ is σ_k -c set in Y. Also $f^{-1}(f(A)) \subseteq f^{-1}$ $(\sigma_k cl(f(A)))$. That is $A \subseteq f^{-1}(\sigma_k cl(f(A)))$. Since f is $\tau_i \tau_j - M^* - \sigma_k - \operatorname{cts}$, $f^{-1}(\sigma_k cl(f(A)))$ is $\tau_i \tau_j - M^* - \operatorname{cts}$ in (X, τ_1, τ_2) . By Theorem 2.7 in [13] $\tau_i \tau_j - M^* cl(A) \subseteq f^{-1}(\sigma_k cl(f(A)))$. Therefore $f(\tau_i \tau_j - M^* cl(A) \subseteq f(f^{-1}(\sigma_k cl(f(A)))) \subseteq \sigma_k cl(f(A))$. Hence $f(\tau_i \tau_j - M^* cl(A) \subseteq \sigma_k cl(f(A))$ for every subset A of (X, τ_1, τ_2) .

Converse of the above Theorem **Error! Reference source not found.** is not true as seen from the following Example.

Example 2.16 Let $X = \{a,b,c,d\}$, $\tau_1 = \{\phi,X,\{a\},\{b\},\{a,b\}\}\}$ and $\tau_2 = \{\phi,X,\{a\},\{b,c\},\{a,b,c\}\}\}$ and $\tau_2 = \{\phi,X,\{a\},\{b,c\},\{a,b,c\}\}\}$ and $\tau_2 = \{\phi,X,\{a\},\{b,c\},\{a,b,c\}\}\}$. Then $\tau_2\tau_1 = \{\phi,Y,\{c\},\{d\},\{a,b\},\{c,d\},\{a,c\},\{b,d\},\{a,b,c\},\{b,c,d\},\{a,c,d\},\{a,b,d\}\}\}$. Define a map $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ by f(a) = f(c) = f(d) = p and f(b) = q. Then $f((2,1) = M^*cl(A)) \subseteq \sigma_1cl(f(A))$ for every subset A of X. But f is not $\tau_2\tau_1 - M^* - \sigma_1$ -cts, since for the σ_1 - σ_1 -cts $\{q\}$, $f^{-1}(\{q\}) = \{b\}$ which is not $(2,1) - M^*$ - σ_2 set in (X,τ_1,τ_2) .

Theorm 2.4 If a map $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is $\tau_i\tau_j - M^* - \sigma_k$ -cts and $g:(Y,\sigma_1,\sigma_2) \to (Z,\eta_1,\eta_2)$ is $\eta_n - \sigma_k$ -cts, then gof if $\tau_i\tau_j - M^* - \eta_n$ -cts.

Proof. Let F be η_n -c set in (Z,η_1,η_2) . Since g is η_n - σ_k -cts, $g^{-1}(F)$ is σ_k -c set in (Y,σ_1,σ_2) . Since f is $\tau_i\tau_j$ - M^* - σ_k -cts, $f^{-1}(g^{-1}(F))=(gof)^{-1}(F)$ is $\tau_i\tau_j$ - M^* -c set in (X,τ_1,τ_2) and hence gof in $\tau_i\tau_j$ - M^* - η_n -cts.

References

- [1] G. K. Banerjee, On pairwise almost strongly θ -continuous mappings, Bull. Cal. Math. Soc., **74** (1987), 195-206.
- [2] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari and T. Noiri, on θ -semi-open sets and separation axioms in topological spaces, Carpathian. J. Math., 24 (1) (2008), 13-22.
- [3] A. Devika and A. Thilagavathi, M^* -open sets in topological spaces, International Journal of Mathematics and its Applications., 4 (1-B) (2016), 1-8.
- [4] J. Dontchev and H. Maki, Groups if θ -generalized homeomorphisms and the digital line, Topology Appl., **95** (2) (1999), 113-128.
- [5] E. Ekici, On e-open sets, DP^* -sets and DPE^* -sets and decompositions of continuity, Arab. J. Sci. Eng. Sect. A Sci., **33** (2) (2008), 269-282.
- [6] A. I. El-Maghrabi and M. A. Al-Juhany, M -open sets in topological spaces, Pioneer J. of Mathematics and Mathematical Sciences., 4 (2) (2011), 213-230.
- [7] H. Maki, P. Sundaram and K. Balachandran, on generalized continuous map and pasting lemma in bitopological spaces, Bull. Fukuoka Univ. Fd, part-III 40 (1991), 23-31.
- [8] J. Kelly, Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71-89.
- [9] M. Lellis Thivagar, O. Ravi, On stronger forms of (1,2)*- quotient mappings in bitopological spaces, Internat. J. Math. Game theory and Algebra, 14 (6) (2004), 481-492.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, American Mathematical Monthly, **70** (1963), 36-41.
- [11] J.H. Park, B.Y. Lee, M.J. Son, On δ -semiopen sets in topological spaces, Journal of the Indian Academy of Mathematics., **19**(1)(1997), 59-67
- [12] S. Raychaudhhuri and N. Mukherjee, on δ -almost continuity and δ -pre-open sets, Bull. Inst. Math. Acad. Sinica, **21** (1993), 357-366.
- [13] A. Vadivel, S. Murugambigai and R. Dharani, M^* -open sets in bitopological spaces, submitted.
- [14] A. Vadivel, R. Venugopal and M. Shanthi, M -open sets in bitopological spaces, submitted.
- [15] N. V. Velicko, *H -closed topological spaces*, Amer. Math. Soc. Transl., **78**, 103-118.